[1]蒋 玲,夏 鸣,张梦婷.我国商业银行不良贷款率影响因素研究[J].西安建筑科技大学学报(社会科学版),2020,39(03):72-79,85.[doi:10.15986/j.1008-7192.2020.03.010]
 JIANG Ling,XIA Ming,ZHANG Meng-Ting.A Research on the Influenc Factors of Non-performing Loan Ratio of Chinese Commercial Banks[J].Journal of Xi’an University of Architecture & Technology(Social Science Edition),2020,39(03):72-79,85.[doi:10.15986/j.1008-7192.2020.03.010]
点击复制

我国商业银行不良贷款率影响因素研究()
分享到:

西安建筑科技大学学报(社会科学版)[ISSN:1008-7192/CN:61-1330/C]

卷:
39
期数:
2020年03期
页码:
72-79,85
栏目:
经济与管理
出版日期:
2020-06-25

文章信息/Info

Title:
A Research on the Influenc Factors of Non-performing Loan Ratio of Chinese Commercial Banks
文章编号:
1008-7192( 2020)03-0072-09
作者:
蒋 玲1夏 鸣2张梦婷3
(1.安徽财经大学 经济学院,安徽 蚌埠 233030; 2.安徽财经大学 金融学院,安徽 蚌埠 233030; 3.安徽财经大学 管理科学与工程学院,安徽 蚌埠 233030)
Author(s):
JIANG Ling1 XIA Ming2 ZHANG Meng-Ting3
(1. School of Economics, Anhui University of Finance and Economics, Bengbu 233030, China; 2. School of Finance, Anhui University of Finance and Economics, Bengbu 233030, China; 3. School of Management Science and Engineering, Anhui University of Finance a
关键词:
商业银行 不良贷款率 影响因素 灰色关联度 VAR模型
Keywords:
commercial bank non-performing loan ratio influence factors grey correlation degree VAR model
分类号:
F832.4
DOI:
10.15986/j.1008-7192.2020.03.010
文献标志码:
A
摘要:
在我国经济环境下行的背景下,银行业不良贷款余额和不良贷款率“双升”情况逐渐加剧,商业银行不良贷款问题的分析与解决有着重大意义。着重分析商业银行内部指标,就实际数据进行灰色关联度分析,得出商业银行不良贷款率的影响指标及指标排名,并运用VAR模型分析关联度较大的因素与不良贷款率之间的相互影响关系和冲击方向。研究表明,存贷比受到国民投资意愿和风险规避程度的双重影响,且宏观经济发展对其影响逐渐减弱; 资本充足率和杠杆率受各项指标影响波动较大,更依赖于宏观经济发展形势; 资本净额的增加对后期资本进入提供了坚实的保障,对自身起到正向冲击作用,但会随着时间的推移不断减弱。据此,提出控制杠杆率区间、保证基本流动性、强化不良贷款处置、完善风险准备制度和加强经济形势预测等政策建议。
Abstract:
In the context of China’s economic downturn, there is a “double rises” in the non-performing loan balance and non-performing loan ratio of Chinese banking industries. It is crutial to analyze and solve the problems of non-performing loan in commercial banks. Studying the internal indicators of commercial banks and analyzing the actual data by means of grey correlation degree method, this paper obtains the indicators and their rankings that influnce the non-performing loan ratios of commercial banks. The VAR model is used to study the interaction between the factors of high correlation degree and also the non-performing loan ratio and their impact directions.The research shows that the loan-to-deposit ratio is affected by both the national investment intention and the risk aversion degree, but the impact of macroeconomic development is gradually weakened.There is a larger flucturation in the capital adequacy ratio and the leverage ratio under the influence of various indicators, which are more dependent on the macroeconomic development situation. Moreover, the increase of net capital provides a solid guarantee for the later capital entry, which plays a positive impact on itself though the influence is decresing later on. In this case, the paper puts forward some policy suggestions, such as controlling the leverage range, ensuring the basic liquidity, promoting the disposal of non-performing loans, improving the risk preparation system and strengthening the prediction of economic situation.

参考文献/References:

[1] 刘冲,杜通,刘莉亚,等.资本计量方法改革、商业银行风险偏好与信贷配置[J]. 金融研究,2019(7):38-56.
[2]BRENDA G H. Developing indicators to provide early warnings of banking crises[J]. Finance & Development,1999,(36)10:36-39.
[3]SIMON H K. Operating performance of banks among Asian economies: an international and time series comparison[J]. Journal of Banking & Finance,2003(9):99-103.
[4]梁秋霞.我国商业银行不良贷款影响因素的实证分析[J]. 吉林工商学院学报,2012,28(1):69-74.
[5]FISHER D.What the new leverage ratio means to banks and their customers[J]. Journal of Corporate Accounting & Finance,2015,26(1):39-44.
[6]方芳,吴波,汤海波.杠杆率:我国商业银行风险监管研究——基于《巴塞尔协议 III》全面风险管理视角[J]. 广东社会科学,2016(6):39-46.
[7]HUDONNIER J, MORELLEC. Bank capital, liquid reserves, and insolvency risk[J]. Journal of Financial Economics,2017,125(2):266-285.
[8]BARTH S C, CHRISTIAN.Capital regulation with heterogeneous banks-unintended consequences of a too strict leverage ratio[J]. Journal of Banking and Finance,2018,88(3):455-465.
[9]林嘉峰.商业银行不良贷款成因及对策分析[J].纳税,2019,13(27):298.
[10]王艺璇,刘喜华.金融稳定、金融杠杆与经济增长——基于时变参数向量自回归模型[J].金融发展研究,2019(10):22-30.
[11]卞金鑫.P2P风险处置的现状、国际经验和借鉴[J].西南金融,2019(5):56-62.
[12]朱斓瑛,赵越,戴玉,等.灰色关联度分析模型的特征与应用[J].科学咨询(科技·管理),2019(8):79.
[13]周久贺,陆鹏.桂林市旅游收入影响因素实证研究[J].广西师范学院学报(哲学社会科学版),2019,40(2):84-92.
[14]靳玉英,贾松波.杠杆率监管的引入对商业银行资产结构的影响研究[J].国际金融研究,2016(6):52-60.
[15]丁浩.市场化与城商行不良贷款率[J].武汉金融,2018(6):54-59.
[16]邹克,蔡晓春.不良贷款率影响因素的实证分析——基于2005-2014年省级面板数据[J].金融理论与实践,2017(2):10-18.
[17]许传华,许达.对新常态下我国商业银行面临若干问题的探讨[J].武汉金融,2017(7):75-78.
[18]孙光林,王颖,李庆海.绿色信贷对商业银行信贷风险的影响[J].金融论坛,2017,22(10):31-40.

备注/Memo

备注/Memo:
收稿日期:2020- 01- 15基金项目:国家自然科学基金项目“自然资源资产与经济增长、经济安全的协调机制与策略研究”(71934001); 安徽省社科联资助项目“安徽省文化驱动新型城镇化发展的机制与路径研究”(2017CX035)作者简介:蒋 玲(1974-),女,安徽财经大学经济学院副教授,博士,研究方向为经济博弈论与金融市场理论; 夏 鸣(1999-),男,安徽财经大学金融学院本科生,研究方向为投资学和现代金融市场理论。E-mail:q2378292162@163.com
更新日期/Last Update: 2020-06-25