[1]耿刘利,王 琦,黎 娜.江苏省工业经济高质量绿色发展评价研究——基于Super-SBM和Malmquist-Luenberger指数模型[J].西安建筑科技大学学报(社会科学版),2021,40(02):50-60.[doi:10.15986/j.1008-7192.2021.02.007]
 GENG Liu-li,WANG Qi,LI Na.An Evaluation Research on the High-quality Green Development of Industrial Economy in Jiangsu Province——Based on Super-SBM and Malmquist-Luenberger index model[J].Journal of Xi’an University of Architecture & Technology(Social Science Edition),2021,40(02):50-60.[doi:10.15986/j.1008-7192.2021.02.007]
点击复制

江苏省工业经济高质量绿色发展评价研究——基于Super-SBM和Malmquist-Luenberger指数模型()
分享到:

西安建筑科技大学学报(社会科学版)[ISSN:1008-7192/CN:61-1330/C]

卷:
40
期数:
2021年02期
页码:
50-60
栏目:
经济与管理
出版日期:
2021-04-25

文章信息/Info

Title:
An Evaluation Research on the High-quality Green Development of Industrial Economy in Jiangsu Province——Based on Super-SBM and Malmquist-Luenberger index model
文章编号:
1008-7192(2021)02-0050-12
作者:
耿刘利王 琦黎 娜
(滁州学院 经济与管理学院,安徽 滁州 239000)
Author(s):
GENG Liu-liWANG QiLI Na
(School of Economics and Management, Chuzhou University, Chuzhou Anhui, 239000, China)
关键词:
江苏省工业经济 高质量 绿色全要素生产率 Malmquist-Luenberger指数
Keywords:
Jiangsu Province High quality green total factor productivity Malmquist-Luenberger index
分类号:
F224
DOI:
10.15986/j.1008-7192.2021.02.007
文献标志码:
A
摘要:
运用非角度非径向Super-SBM和Malmquist-Luenberger指数模型对江苏省工业经济高质量发展水平进行了较为全面的评价,得出如下结论:2013-2018年江苏省不考虑非期望产出的工业发展效率均值为1.049,而考虑非期望产出的工业绿色发展效率均值为1.020,比不考虑非期望产出的工业发展效率平均低0.029,更能反映高质量要求下工业经济发展的质量水平。各年江苏省工业绿色全要素生产率均低于传统的全要素生产率,且二者呈现出较为一致的变动趋势,即以2016年作为拐点呈现“先下降后上升”的趋势,从平均值来看平均相差-0.126。江苏省三大区域工业绿色全要素生产率(GTFPCH)平均值大小排序为:苏南>苏中>苏北,这个与其经济发展和科技创新水平情况较为相符。根据实证分析结论提出对策建议:统筹规划,制定差异化政策措施,促进工业经济均衡发展; 推动江苏省工业科技自主创新与运用,提升工业科技与管理水平; 优化工业各项资源要素的合理配置,推动工业资源高效集约利用,促进工业结构转型与升级。
Abstract:
This paper mainly uses the non-angle and non-radial Super-SBM model and Malmquist Luenberger index to evaluate more generally the high-quality development level of industrial economy in Jiangsu Province. It comes to the conclusion that the average efficiency of industrial development without considering the undesired output in 2013-2018 is 1.049, while that of green industrial development taking the undesired output into account is 1.020, 0.029 lower than the former ratio. This reflects the quality level of industrial economic development under high quality requirements. In each year, the green total factor productivity is lower than the traditional total factor productivity in the industry of Jiangsu Province, though there is a relatively consistent trend of changing in the two. Namely, the year of 2016 as a turning point witnesses the trend of “decline firstly and then rise” with a difference of -0.126 on average. The average value of industrial green total factor productivity(GTFPCH)in three major regions of Jiangsu Province is sorted as follows: South Jiangsu > Central Jiangsu > North Jiangsu, which corresponds nearly with its economic development and technological innovation level. According to the conclusion of empirical analysis, the paper puts forward countermeasures and suggestions such as formulating an overall plan of differentiated policies and measures to motivate the balanced development of industrial economy, accelerating the independent innovation and application in industrial science and technology in Jiangsu Province to upgrade industrial technology and management, optimizing the rational allocation to promote the efficient and intensive utilization of industrial resources and as well as the transformation and upgrading of industrial structure.

参考文献/References:

[1]COBB C W, DOUGLAS P H. A theory of production[J].American Economic Review,1928,18(1):139-165.
[2]TINBERGEN J. Critical remarks on some business cycle theories[J].Econometrica,1942,X(2):129-146.
[3]SOLOW R M. Technical change and the aggregate production function[J].Review of Economics &Statistics,1957,39(3):554-562.
[4]FARRELL M J. The measurement of productive efficiency[J].Journal of the Royal Statistical Society,1957,120(3):253-290.
[5]AIGNER D, LOVELL C A, SCHMIDT P. Formulation and estimation of stochastic frontier production function models[J].Journal of Econometrics,1977,6(1):21-37.
[6]MEEUSEN W, JULIEN V D. Efficiency estimation from cobb-douglas production functions with composed error[J].International Economic Review,1977,18(2):435.
[7]CAVES D W, DIEWERT L R. The economic theory of index numbers and the measurement of input,output,and productivity[J].Econometrica,1982,50(6):1393-1414.
[8]FARE R, GROSSKOPF S, LINDGREN B, et al. Productivity developments in swedish hospitals: a malmquist output index approach[J].Data Envelopment Analysis Theory Methodology &Applications,1994.
[9]CHUNG Y H, F?RE R, GROSSKOPF S. Productivity and Undesirable outputs: a directional distance functionapproach[J].Microeconomics,1997,51(3):229-240.
[10]陈宽,谢千里,T·罗斯基,等.中国国营工业生产率变动趋势研究[J].中国社会科学,1988(4):37-44.
[11]涂正革,肖耿.中国的工业生产力革命——用随机前沿生产模型对中国大中型工业企业全要素生产率增长的分解及分析[J].经济研究,2005(3):4-15.
[12]吴军.环境约束下中国地区工业全要素生产率增长及收敛分析[J].数量经济技术经济研究,2009,26(11):17-27.
[13]岳鸿飞,徐颖,周静.中国工业绿色全要素生产率及技术创新贡献测评[J].上海经济研究,2018(4):52-61.
[14]袁宝龙,李琛.环境规制政策下创新驱动中国工业绿色全要素生产率研究[J].产业经济研究,2018(5):101-113.
[15]周五七.长三角工业绿色全要素生产率增长及其驱动力研究[J].经济与管理,2019,33(1):36-42.
[16]许冬兰,张敏.中国工业低碳全要素生主率的测算及分解——基于动态EBM-MI指数模型[J].青岛科技大学学报(社会科学版),2018(4):19-24.
[17]杨文溥.行业竞争对企业全要素生产率的影响——基于中国工业企业的经验研究[J].南京财经大学学报,2020(1):33-41.
[18]TONE K. A slacks-based measure of super-efficiency in data envel-opment analysis[J].European Journal of Operational Research,2002,143(1):32-41.
[19]李苏苏,叶祥松,张少华.中国制造业企业全要素生产率测度研究[J].学术研究,2020(3):105-113.
[20]赵春雨,朱承亮,安树伟.生产率增长、要素重置与中国经济增长——基于分行业的经验研究[J].中国工业经济,2011(8):79-88.
[21]谭涛,吴江,王旻轲,等.四川省工业绿色全要素生产率评价研究——基于Malmquist-Luenberger指数[J].宜宾学院学报,2019,19(2):58-69.
[22]陈诗一.能源消耗、二氧化碳排放与中国工业的可持续发展[J].经济研究,2009(4):41-55.

备注/Memo

备注/Memo:
收稿日期:2020-06-11
基金项目:安徽高校人文社科重点研究基地重点项目“‘一带一路战略’中江淮分水岭区域企业‘走出去’过程中的税务风险规避与税收筹划的研究”(SK2018A0429); 安徽省创新发展攻关项目“安徽省农村一二三产业融合发展:评价、农民增收促进机理与检验”(2020CX058)
作者简介:耿刘利(1989-),男,滁州学院经济与管理学院讲师,硕士,研究方向为经济高质量发展; 王 琦(1974-),男,滁州学院经济与管理学院教授,硕士,研究方向为税务会计、税收筹划。E-mail:1197854753@qq.com
更新日期/Last Update: 2021-04-25